Day 30

Simultaneous Localization and Mapping

SLAM

- simultaneous localization and mapping
 - one of the most fundamental problems in mobile robotics
- a robot is exploring an unknown static environment
 - robot is given sensor measurements and control inputs
 - does not have a map
 - does not know its pose

SLAM

- robot must acquire a map while simultaneously localizing itself relative to the map
 - harder than just localizing
 - has no map
 - harder than just mapping
 - does not know its pose

Online SLAM

- in the online SLAM problem, we wish to estimate
 - the current pose of the robot x_t and
 - the map variables *m*
- we are given
 - the sensor measurements $z_{1:t} = \{z_1, z_2, ..., z_t\}$ and
 - the control inputs $u_{1:t} = \{u_1, u_2, ..., u_t\}$

Online SLAM

- the online SLAM problem is often expressed in a probabilistic framework
 - compute the posterior probability

$$p(x_k, m | z_{1:k}, u_{1:k})$$

what is the probability density function of the robot's current pose and the map given the history of sensor measurements and control inputs?

Landmark-Based SLAM

A Simple Landmark-Based SLAM Problem

- given
 - a directionless robot (i.e., don't care about orientation) that moves in controlled but noisy steps
 - n fixed landmarks
 - the robot can measure all of the landmarks all of the time in a controlled order
 - the robot measures the relative offset from its position to each landmark

Kalman Filter: Plant or Process Model

 describes how the system state changes as a function of time, control input, and noise

$$x_{k+1} = \Phi x_k + \Gamma u_k + v_k$$

- x_k state at time k
- u_k control inputs at time k
- \triangleright v_k process noise at time k
- $\blacktriangleright \Phi$ state transition model or matrix
- Γ control-input model or matrix

Kalman Filter: Measurement Model

 describes how sensor measurements vary as a function of the system state

$$z_k = \Lambda x_k + w_k$$

- z_k sensor measurement at time k
- \mathbf{W}_k sensor noise at time k
- \blacktriangleright Λ observation model or matrix